The world’s largest organization of fisheries scientists has added its voice to the chorus of conservationists calling for the removal of four dams on the Lower Snake River to speed the recovery of wild salmon and steelhead.
The Western Division of the American Fisheries Society, an organization whose mission is to protect fish habitat nationwide, passed a resolution on Monday that called for the federal government to take a more proactive stance on removing the dams.
“If society at large wishes to restore Snake River salmon, steelhead, Pacific lamprey and white sturgeon to sustainable, fishable levels, then a significant portion of the lower Snake River must be returned to a free-flowing condition,” the resolution states.
The dams are under fire because of their role in blocking salmon and steelhead runs and increasing mortality of fish travelling to and from spawning grounds in the Columbia River basin and beyond. But according to the Bonneville Power Association, the dams are necessary to meet demand for electricity throughout the Pacific Northwest in peak seasons.
Despite millions in taxpayer investment and 10 years of construction, the public is still fighting for access to a manmade lake in Fellsmere. LUCAS DAPRILE/TCPALM Wochit
“Git ‘er done.”
Did he really say that?
Yep. The full context of what he said was actually, “Smoke a peace pipe and get ‘er done. Let’s get this thing done.”
“He” was Doug Bournique, a member of the St. Johns River Water Management District governing board since 2008. He was speaking during the board’s regularly scheduled monthly meeting to receive status updates on district projects and conduct its business.
He was talking about a boat ramp. One conceived by district staff as long as 11 years ago, but has yet to become a reality.
The good news is, Bournique’s urging was music to the ears of freshwater sportsmen. The wait is coming to an end. The bad news is, that still may be more than a year.
It’s how things get done in state government. Not exactly fast.
Bournique was not doing an impression of Larry the Cable Guy. He was directing district staff to resolve the lack of a boat ramp at Fellsmere Water Management Area.
More: Fellsmere Water Management Area boat ramp should be done in a year, water district says
Already, $104 million of state taxpayer money has been poured into the 10,000 acre reservoir. The hold up has been closing the deal on one more 5-acre parcel on the water body’s northeast corner. It’s the preferred location, says the district, for placement of a concrete boat ramp and dock, paved parking area and restrooms.
The ramp area, called “Access Point 1” in district documents, would be a little under two miles east of where the Fellsmere Grade Recreation Area (what everyone calls the Stick Marsh) parking lot and facilities are.
The important news you want to read is this:
Negotiations with private landowner Fellsmere Joint Ventures are underway, and according to district projects chief Rob Zammataro, “are going very well.”
Negotiations must be completed by end of the month, or else the district will begin working on placing a boat ramp at “Access Point 2,” the northwest corner of the reservoir where there is already parking and facilities for Stick Marsh and T.M. Goodwin anglers and hunters.
There is a deadline of April 3 the district is trying to meet in order to apply for a Florida Boating Improvement Grant provided by the Florida Fish and Wildlife Conservation Commission.
Once the district knows which site it will begin developing, it can begin budgeting for $550,000 in project costs for AP1 or an estimated $800,000 is site AP2.
Site AP 1 could be completed in a year, Zammataro said, while AP2 may take longer because of permitting requirements and application and approval deadlines.
Fishing Hole
Anglers who fish from paddleboards and kayaks have been enjoying world class fishing action, when the bite is on. Peter Hinck of Sebastian, known to many on his YouTube Channel Palm Beach Pete, fished there two days this week. Friday, he caught and released 50 bass using D.O.A. Cal Swim Bait in the figi chix color while fishing from his Dragonfly Boatworks stand-up paddleboard.
The main enhanced zone for fish habitat is closer to the southern end of the 7-mile long lake. Even Hinck, an advanced paddler, admitted he couldn’t go that far. As for now, the only access points are on the northern shoreline. The edge of the best enhancements are nearly five miles away. The additional habitat information is at fishiding.com
Soon, paddlecraft anglers are going to have to begin sharing this fishing hole with bass boats headed out for catch and release trophy fishing. Pontoon boaters will be heading out, too, to catch speckled perch, bluegill and shellcracker.
Many waters
In 2007, the district began work to acquire former citrus, row crop and pasture land from Fellsmere Joint Ventures, the company once headed up by Bernard Egan, the patriarch of a longtime Indian River County agricultural family. The company still operates and leases its land to ag and other businesses, and holds development rights for what could one day become hundreds of home sites.
As for the reservoir, the water management district describes it as one of the largest projects it has ever taken on. It has transformed the land into what the district describes as a “multi-function reservoir.”
More: Costly Fellsmere Water Management Area in IRC falls short for some
The reservoir is needed to serve “water supply and flood control purposes, redirect water from discharging into the Indian River Lagoon and into the St. Johns River, and help improve the water quality of agricultural and surface water drainage,” according to a district status update. Working in conjunction with the Florida Fish and Wildlife Conservation Commission, the agencies were able to also create a world class fishing destination in the process.
While recreation is an important component of the $104 million (so far) project, it is not it’s first priority, explained Rob Zammataro, district projects chief.
“Reservoirs are used for four separate things,” he said. “Sometimes combining four uses into one water body can be a challenge and there could be conflicting aspects. It’s pretty unique. It also reduces the withdrawals of water from the aquifer.”
Get ‘er done
As for Tuesday’s meeting, Bournique and district general counsel Bill Abrams seemed enlightened. Bournique said the district should pursue both ramp options equally and to FJV, obtain “quick resolution of their issues. Whatever works. I think it’s in the best interest of this district to move forward and get a boat ramp going.”
Board chairman John Miklos directed staff to have an actionable item on the boat ramp ready for its next governing board meeting, March 13. By then, we’ll know which option boaters can begin looking forward to.
Either way, I’m with Doug. Let’s just get ‘er done.
Ed Killer, ed.killer@tcpalm.comPublished 7:28 p.m. ET Feb. 16, 2018 | Updated 12:14 a.m. ET Feb. 17, 2018
Recreational meeting
What: ??St. Johns River Water Management District recreational use meeting When: 6-8 p.m. Thursday Where: 525 Community College Parkway S.E., Palm Bay
Ed Killer is the outdoors columnist for Treasure Coast Newspapers and TCPalm.com, and this column reflects his opinion. Friend him on Facebook at Ed Killer, follow him on Twitter @tcpalmekiller or email him at ed.killer@tcpalm.com or call him at 772-221-4201.
The Sprocket Fish Spawning Rocket is the only, multi-species, artificial spawning structure, designed exclusively for nest protection and fry survival.
Self weighted and fully assembled, this 14 pound spawning rocket, can be installed directly from the box into shallow spawning water.
Three individual compartments provide fish a choice to bed in any direction with three sided protection, each measuring approx. 15″x72″ with an overall diameter of over seven feet!. More habitat models at fishiding.com
First off, let’s not continue to confuse fish habitat with fish attractors. There are many substabtial differences between the two and what each product is intended for. Both products attract fish, but only habitat holds the future of fishing.
Under the Fisheries Act, fish habitat is defined as: “Spawning grounds and nursery, rearing, food supply and migration areas on which fish depend directly or indirectly in order to carry out their life process. (Fisheries Act Section 34(1))”.
Artificialfish habitat as defined above, is simply habitat that is man made with materials not found in nature. Although made from mainly plastics, the intended goal is absolutely the same. Reproduction and protection of more fish.
The planting of native aquatic plants, installing brush, rock, deadfalls and timber would be considered supplemental natural habitat. These types of materials succeed in replacing natural materials that have decayed or have been lost to siltation, erosion and development, but were once present.
Artificial fish attractors attract larger fish and little more, accomplishing the intended task as designed. Open in design and able to see through, generally tubes and sticks that are easy to get fishing lures around, they attract larger fish to a designated area for a short time in transition between cover, made for fisherman to enjoy. One job well done when placed and designed in such a manner that the desired species of fish feel comfortable using it. More at fishiding.com
Silt and sedimentation are clogging our nation’s waterways and reservoirs. Years of fluctuating water levels, erosion, development, nutrient loading and decomposition of natural materials, have put these waters in dire need of improvements. Fish habitat, which includes habitat for countless other equally important aquatic organisms, lacks to the degree on many U.S, waters, that no amount of fish stocking can improve the fishery. Without adequate habitat, the fish simply cannot survive.
I met Shane Titus, Seneca Nation of Indians Fishery manager over three years ago as we began to talk about fish stocking, fluctuating water levels and ways of improving overall fish habitat on the Allegany River/Reservoir. Shane contacted me directly to understand more about our artificial habitat products and working together with ways to improve his local conditions. Here is a man with a unique perspective on Tribal rights as well as American U.S./State policies. Proudly having an Indian mother and Italian father, his gentle blend of both “sides”, make it evident that he is a special and highly qualified man for this job. His utmost concern is for the land, waters and the creatures within, helping sustain this natural environment, which breathtakingly surrounds himself and his people in western New York.
Shane understands the benefits of adding habitat. He has installed habitat structures in the reservoir for many years and has a quite impressive reputation as a fisherman. “Because the reservoir is so lacking of good habitat, almost anything you add will usually hold some fish.” Prime habitat for all animals, including fish, focuses around diversity. All of the same is rarely best, no different than we humans see things. A less stressful environment grows healthy beings and fish health also is directly related to the stress they encounter surviving from fry through adulthood.
To best understand a healthy fish habitat, imagine a large tract of mature hardwood forest, noticing the plants from tiny grasses and ferns, up to shrubs, bushes and trees. Countless shapes, textures, densities and elevations provide unlimited choices of surroundings, depending on creatures needs. Tiny bugs and insects, utilize the fine forest floor, hiding and grazing on the abundant food available. Birds eat berries and some of those bugs, from the lower branches of bushes and undergrowth, while they defensively watch for danger from above or below. Deer, rabbit, and other small game enjoy the shade from the undergrowth as they hunt or rest. The bigger the tract of forest, the more variety and abundance animals it can/will sustain. Fish habitat is no different than a mature and healthy forest, requiring infinite variety to support diversity and abundance.
Increasing fish habitat groupings on a large scale creates unique areas and corridors for fish to flourish and increase in numbers, not simply attracting a few fish to the area for potential fisherman/predator fish to enjoy. The surface area of the habitat grows the food (periphyton) with more area being best and essential to a healthy eco-system. Tight, dense shaded areas are essential for small fish to hide and graze within the protection the substrate offers. Dense, ultra-fine cover at the water’s edge restores the once healthy mass of roots and aquatic plants, grasses and invertebrates that young fish need. Natural weed beds and large rocks once provided this surface area for periphyton and algae to grow, but now they have been lost to sedimentation.
Titus was instrumental in obtaining a grant to help construct a new fish hatchery on the Reservation a few years back, which is now pumping out walleye and smallmouth fry annually for the Allegany.
His next goal was to get the financial help needed to begin to reclaim areas of the Allegany Reservoir that had been degraded. “We have almost no shallow cover left for the fry, due to erosion and siltation. Bays that lock in fish as they lower the water levels, killing everything left. We need to scoop that stuff out so they can navigate in and out like they used to be able to.”
As Shane continued to follow up on applications for various grant opportunities, our plans to work together to improve conditions on the Reservoir within the Reservation began to take shape. In late summer of 2014, notification was received of a grant award to the SNI from the National Fish and Wildlife Foundation being part of the Hurricane Sandy Coastal Resiliency grant funding. I got the call from Shane that his application was approved and how he was not only grateful, but quite humbled. “Our people could never have been able to afford and accomplish so much, so quickly, on a scale of this size. This will make a huge, positive impact on the fishery across miles.”
Plans were made to drive the 600 miles out to review the site, along with numerous models of our Fishiding artificial habitat. Decisions were to be made as to which artificial habitat models would be best, where the grouping would go and the overall quantities involved.
Fishiding.com produces artificial fish habitat from reclaimed PVC vinyl siding contained in a weighted base. Models from 18” tall up to 15 feet create unlimited variety, textures and densities of cover, creating a truly natural underwater landscape for aquatic life to thrive within. Over 2300 units consisting of five different models were selected totaling over 64,000 sq. ft. of surface area, ranging from 48”x84” to 18”x30” in size.
Means being used to document the habitats ability to provide sustainable habitat and deter erosion are by way of sonar equipment, water quality testing, underwater cameras and scuba certified staff. We (SNIFWD, USACE, USFS, and PAFBC) will be looking for signs of life such as invertebrates, algae growth, insect life, eggs of all life (insects, fish, amphibians, etc.) and any species of fish utilizing the habitat for shelter and food for research purposes and decision making for future habitat projects.
“It’s a no brainer as I see it,” said Titus. “Using this safe, durable, long-lasting material for fish habitat instead of buried in landfills, is a win for the people, fish and the environment. We can grow that stuff right into the shoreline, creating fry habitat and stabilizing the bank at the same time. We can plant them like balled bushes and watch them grow with life each year.”
I was welcomed by Shane and the team of conservation officers at the Fish and Wildlife Department who proudly work to sustain this pristine land they call home. A first-hand view of the Reservoir in November, Shane showed me the areas that we had talked about, in dire need of restoration.
We walked the river edge, casting jigs for some feisty walleye and smallmouth, catching a few and releasing them back to swim away. “ I keep a couple here and there, but they still feel like my babies” Shane explained, after raising and releasing hundreds of thousands of fry from the SNI Hatchery facility he operates on the Reservation, releasing them into the Reservoir. He showed me areas devoid of cover, after erosion and low water had worn away the plants, depositing sediment where rock/rubble once exposed. Huge bays landlocked, explaining how many fish die each year, being stuck with no way out as water levels drop, despite volunteers and staff netting and saving thousands of fish each season. Water marks so high, trees and plants were washed away, only to leave the water’s edge barren for fish to contend with in the spring as they attempt to successfully spawn.
Needless to say, excitement grew with the dream of being able to work along the river on a very large scale. To install thousands of individual habitat units creating tens of thousands of square feet of surface area would boost the fishery measurably. Concentrating on shoreline stabilization and fry recruitment, all targeting depths from 6 feet of water and under for the little fish, bugs and plant growth. Another additional benefit of large groupings of habitat is the excrement discarded by the fish and creatures that inhabit it fertilizing plant growth. Clearly aquatic growth, grass and weeds take root in the surrounding lake floor, being fertilized by the fish from above. Another win-win for the fish and the environment.
Project Abstract
The goal of this funding through established partnerships with the PAFBC, USFS, ACE will be to restore the habitat within the reservoir and create an enhanced water system that can tolerate high water events with minimal loss to wildlife and habitat.
The Seneca Nation of Indians has a long history of struggling to maintain its land base and yet there remains a unique and harmonious relationship between indigenous people and the concept of environmental sustainability. The Seneca people believe fully in the tenet of their forefathers, that everyone must plan for the future generations, up to and beyond the seventh generation. The current conditions that exist within the Allegany Reservoir create an intolerable struggle within the people as they are forced each year after year to witness thousands of fish dying, species disappearing or become species of concerns, a vital wildlife habitat lost. Over the past 60 years this reservoir has had numerous high water systems into the reservoir, suffocating aquatic species. Each event results in species lost, habitat lost, channels filled and community flooding.
The people of the Seneca Nation live and work on the same lands today that the Seneca people have inhabited for over 1000 years. The Seneca Nation holds title to five distinct but non-contiguous territories located in western New York, an area of the state where communities are primarily rural in geographic location. The territories are unique in its economic, social and environmental profile. With 53,884 acres, the Seneca Nation controls and holds a significant land base in western New York.
“The Allegany River/Reservoir Restoration and Resiliency Project”
Objectives/Outputs/Outcomes:
Create a healthier habitat for aquatic species within the Allegany Reservoir
10 acres will receive in stream habitat restoration efforts.
50 acres will benefit from artificial and natural habitat structures.
Enhance the flood plain and habitat restoration of the Allegany Reservoir through riprarian buffer restoration.
18.94 miles will have large debris removed from shoreline area.
10 acres will receive indigenous plantings.
Restore hydrology to land locked areas of the Allegany Reservoir.
7 land locked areas will be reconnected to the Allegany Reservoir.
15 acres will be cleaned of sediment, silt and nutrients.
The habitat has been delivered and equipment is in place. Over the next two years, Shane and his team will work all year around, improving the many areas covered within the grant. A great deal of the work will be during the winter months, when water levels are down and lakebed areas exposed. The team will use an earth auger to drill/install the many pole clusters to be installed to regain a plant base in the many washes, streams and creeks flowing into the reservoir. These barriers will catch debris during runoff, creating a medium for plants to begin to take hold. Dozers, trucks along with a good amount of manpower will begin to remove the 1000’s of cubic yards of sediment from the bays and openings, allowing the fish to again, freely pass.
The artificial habitat units will be planted individually in shallow, drilled holes and backfilled like a balled bush. Planted in large clusters, these units will become exposed each year as the water levels drop in the fall, but take on new life each spring as water levels rise and fish move in to seek spawning protection. Not only will the shallowest models protect fish, but allow shoreline plants and their roots to attach and take hold, strengthening and buffering the eroded shallows. With this substrate in place, only good things follow.
Late in 2014, the Seneca Nation hosted its third annual “Allegany Reservoir Management Meeting”. Agencies that are represented at these meetings are: SNI Fish and Wildlife, SNI Administration Representatives, Pennsylvania Fish and Boat Commission, New York State department of Environmental conservation, US Army Corp of Engineers, ( KInzua staff, Pittsburg District), US Fish and Wildlife Service (Tribal Liaison, Great lakes rep., Hatchery Lamar PA, and Hatchery Kinzua PA), US Forest Service and California University of Pennsylvania. Topics discussed at these meetings are all the topics mentioned in the grant, plus stocking strategies, fish sampling surveys, fish pathology and funding opportunities. These “first of their kind” meetings are a shared water body being managed as a single water body.
Aquatic species that will benefit from the habitat are: Walleye (tribally significant species to Seneca culture and heritage) Smallmouth Bass, Large Mouth Bass, Black Crappie, White Crappie, Paddlefish (endangered), Northern Pike, Muskellunge, White Bass, Yellow Perch, Bullhead, Channel Catfish, Sunfish, Rock Bass, Sucker, Emerald Shiner, Golden Shiner, Fathead minnows, Spot Tail Shiner and Bluegill, Fresh Water Jelly fish, Aquatic spiders and Macro invertebrates.
Wildlife also benefitting from the habitat: Bald eagle, Golden Eagle, Cormorants, Loons, Ducks (all species), Canadian Goose, Osprey, Green Heron, Blue Heron, Snapping Turtle, Painted Turtle, Leather Back Turtle, Hellbender (amphibian, species of concern) and River Otter (species of concern)
Increased stewardship among the Seneca community will be an immeasurable benefit of this project. The SNI Fish and Wildlife Staff provide educational programs directed at youth to teach them about the environment and its importance to the health of all fish and wildlife. The SNI Fish and Wildlife Department plans on using these projects to create a three year educational tool for the youth and general public. The Seneca nation newsletter will be doing periodic articles to keep the public informed and involved in all aspects of the projects, to include the purpose, reasons, and outcomes of the work.
For more information regarding Reservoir habitat restoration, funding and other projects taking place, visit Friends of Reservoirs, which SNI Fish and Wildlife and Fishiding strongly support. Friends of Reservoirs (FOR), is a tax-deductible non-profit foundation dedicated to protecting and/or restoring fisheries habitat in reservoir systems nationwide. FOR is the funding arm of the Reservoir Fisheries Habitat Partnership, an organization of natural resource professionals and industry representatives, associated with the National Fish Habitat Partnership. FOR is also a coalition of local citizen groups dedicated to improving fish habitat in reservoir systems. David Ewald/ Fishiding.com
Underwater photography by Eric Engbretson, all rights reserved. For a complete library of Fishiding habitat underwater in various locations and conditions see Eric’s work here. Watch for much more information, photos and reports as this project gains momentum. We will be making many trips back to see Shane and his crew improving conditions on the Reservation. Fishing poles and tackle must be present for “testing”.
Imagine a town consisting entirely of seniors. The town has no children, no teenagers, and no young adults. All the schools, playgrounds, and sports fields have closed. The town is eerily empty and still. And every year, as seniors pass on, the town’s population grows smaller and smaller. With no young people to replace the departed, the town will simply disappear from the map. A grim future indeed.
Until last year, this same sad demise seemed destined for Lake Ellwood in Florence County, WI. In its waters, bluegill and largemouth bass had grown old. For the better part of a decade, no young fish were surviving to replace them. But now it seems that a corner has been turned and the news is good. Today, Ellwood is a lake on the brink of recovery. The story of the lake’s resurrection is a tale that involves invasive plants, a dedicated fisheries biologist, and a host of scientists working against the clock to save a small but beloved piece of Florence County.
THE CRASH
A healthy lake gets a steady stream of newborn fish every year, and the newborns that survive to maturity constantly enlarge the adult population. Fish biologists call this process recruitment. Of all native fish, largemouth bass and bluegill are both extremely prolific and they have shown outstanding talent for recruitment. Unlike walleyes, which require very specific conditions to reproduce, largemouth bass and bluegills thrive even when conditions are far less than ideal. Typically, when two years pass without largemouth bass and bluegill recruitment, fish managers become concerned, and Lake Ellwood has now seen seven consecutive years with failed recruitment. Dr. Andrew Rypel is the state’s lead panfish researcher for the Wisconsin Department of Natural Resources. “It’s an eyebrow-raiser to be sure. What’s happened on Lake Ellwood has gotten our attention. It’s very weird.”
Greg Matzke is the DNR’s senior fish biologist for Florence and Forest Counties. When I visited him in his office at the Florence Resources Center a year ago, he was eager to discuss Lake Ellwood. “The fisheries biologist position for Florence was vacant for three years prior to my arrival,” he told me. “By the time I got here in year 2010, many of our lakes hadn’t been surveyed in a while. When we got around to looking at Lake Ellwood in 2012, the fish population hadn’t been surveyed for a decade. What we found was a lake with few young fish. By the end of our spring survey it was clear to me that something was wrong with some of the major fish populations in Lake Ellwood.” What Matzke documented in 2012 was an almost total collapse of the fish community. In Wisconsin, a failure of this magnitude in largemouth bass and bluegill recruitment is utterly unprecedented.
Matzke typed excitedly on his keyboard as a graph flashed onto the screen. Compiled from the data he had collected, the graph showed a sudden drop in northern pike recruitment after 2004, followed by bluegill and largemouth bass recruitment failures after 2006. Northern pike and largemouth bass recruitment had not occurred at all since 2004 and 2008 respectively, while bluegill recruitment fell off and became insignificant after 2006. “We surveyed that lake extensively, with 44 fyke net lifts and 7 complete electrofishing surveys totaling 20.22 miles (on a lake with 2.8 miles of shoreline) and couldn’t find a single fish younger than five, six and eight years of age, for largemouth, black crappie and northern pike. Not one.” said Matzke. “Nobody has ever seen anything like it.” In total Matzke spent 19 days surveying the fishery in one small lake, which is a great deal of time and effort, and I wondered how many lakes earn such scrutiny. “Not many,” said Matzke. I asked the big question: “What happened to the fish?” He paused and exhaled. In a reflective mood, he lowered his voice: “At first I had no idea, but after gathering and analyzing all the data it’s quite clear…. I believe it has to do with the milfoil treatments out there.”
THE MILFOIL CONNECTION
In the bars of Spread Eagle, fishing is a hot topic among the locals. It fills the air in the summer months, when local businesses are booming and lakefront owners are spending more time on the water. Between rounds, someone mentions the fish crash in Lake Ellwood, and explanations flow like beer from a freshly-tapped keg. On a steamy night last July at the Chuck Wagon Restaurant, the fate of the lake engaged almost every person in the room. Barroom biologists blamed culprits ranging from low water levels to fish cribs and even invasive Eurasian watermilfoil (EWM) sucking the oxygen out of the lake.
Back in their offices, Matzke and his colleagues considered these possibilities and decided none of them were credible because these same conditions exist on hundreds of lakes throughout Northern Wisconsin, and none of the lakes has shown collapses in fish as was documented in Lake Ellwood. In their opinion, the crash stemmed from chemical herbicides applied to control the invasive plant Eurasian watermilfoil.
Eurasian watermilfoil (EWM) was discovered in Lake Ellwood in 2002. Treatments started during the next spring. The Lake Ellwood Association contracted with a lake management firm to monitor and treat the lake every spring thereafter with very good success. As chemical treatments continued, invasive plants began to subside. Encouraged by their success, the lake association continued treatments in the hope of eradicating small but persistent areas that would materialize. An unintended consequence was that native plants were also being killed by the herbicide.
Once considered the most crucial problem facing the Lake Ellwood Association, milfoil has now taken a back-seat to the lake’s most urgent issue: The fish crash. It was a shift in priorities that took time to embrace. Matzke recalls that “when it came to Lake Ellwood, too many people were focusing on the wrong thing. In the beginning, when I told them about the fish crash, they listened, but still seemed more concerned about the milfoil. I explained that milfoil was not the biggest problem. A milfoil-free lake is worthless as a fishery if it can’t sustain healthy fish populations.” Many people were still talking about invasive species ruining the lake when it was losing its fish at an alarming rate. “We needed to do something to encourage fish recruitment before it was too late.” Despite being alerted to the collapse of the lake’s fishery and a hypothesis that linked the crash to the milfoil treatments, in the spring of 2013, the Lake Ellwood Association applied for their annual permit to continue chemical treatments. The news of the disappearance of what was once a balanced, self-sustaining, and vibrant fish community had seemingly fallen on deaf ears. Matzke, along with WDNR water regs staff, denied the permit application. He defended what was an unpopular decision at the time by saying, “We need to take a time-out and find out what’s going on in this lake. It’s not a stretch to suggest that the milfoil treatments may be doing more harm than good.” At first, many were unconvinced that any connection existed, but since then, those who have studied the data compiled by Matzke admit that the evidence is hard to ignore.
So how could treatments aimed at invasive plants be hurting Lake Ellwood’s fish? The exact pathways behind the crash are still being investigated, but two plausible reasons might explain why multiple fish species have failed to recruit. One is that the chemicals disturb the aquatic insect community that young fish need for survival, and the fish literally starve to death in their first few months of life. Another theory that holds more water is that the chemical herbicides have depleted too much of the lake’s native plant community that young fish need for refuge. Without dense plant beds to hide in, young fish may be preyed upon by larger fish, and by the fall, entire year classes of fish are gone with no survivors to contribute to the lake’s fish community. It could also be a combination of both of these scenarios. While it’s unknown exactly how the fish crash happened, it’s clear that the chemicals played a key role. Native vegetation is critical to fish. There are many examples illustrating this important connection. On other Wisconsin Lakes, the loss of native vegetation has proven to be the cause behind similar crashes of largemouth bass and bluegill populations. In those lakes, rusty crayfish or common carp were responsible for removing too much native vegetation, causing largemouth bass and bluegill populations to collapse. On Lake Ellwood, the same thing has happened. But on this lake, humans, using herbicides, are behind the loss of native plants fish need.
Dr. Andrew Rypel, Wisconsin’s leading panfish researcher, says that the complex relationship bluegills have with plants are just beginning to be understood by fish scientists. “We’re trying to understand how this occurred and we’re looking at other water systems with aquatic plant management programs around the state to see if this is an anomaly.” He added, “With bluegills, we know habitat is important. In fact, for the first time, we’re really starting to study how plants affect fish quality”.
Is there a way to save the fish, preserve native plants and still limit invasive milfoil? “Yes,” says Greg Matzke, “But not with continual use of chemical herbicides.” Denied permits to use any further chemical herbicides, the Lake Ellwood Lake Association cleverly looked to alternative methods of milfoil removal. Last summer, they contracted with an Iron River company, Many Waters LLC, to use Diver Assisted Suction Harvesting (DASH) as an alternative to herbicides. The DASH system features a giant vacuum cleaner atop a pontoon. At the bottom of the lake, scuba divers use their hands to pull out invasive milfoil (and avoid native plants) and then feed it into a tube that takes it to the surface for collection and removal. Unlike chemical treatments, DASH acts selectively by focusing only on milfoil and leaving other plants generally undisturbed. Matzke gave his warm approval to DASH: “We need to preserve and expand native plants in Lake Ellwood for fish to have a chance at survival. The DASH system removes milfoil without harming the native vegetation essential to fish.” Early results appear encouraging: In the summer of 2013, DASH took more than two thousand pounds of milfoil out of Lake Ellwood.
HOW BAD ARE INVASIVE PLANTS?
Dr. Jennifer Hauxwell is chief of fisheries and aquatic sciences research at the Wisconsin Department of Natural Resources. Headquartered in Madison, her team of scientists have been studying Eurasian watermilfoil for ten years. What they’ve discovered so far is that EWM is tough to pin down. It doesn’t seem to behave in any two lakes quite the same way, and there’s no way to predict if it will peacefully co-exist with native plants as it does in most lakes or reach overabundance as it does in others. Hauxwell says, “In some lakes EWM never ‘takes off’ or expands to levels requiring any management. In some lakes EWM is a major component of the ecosystem and may provide structure/habitat complexity if native species diversity is low or absent. In some eutrophic to hyper-eutrophic lakes EWM may be the only species keeping the lake from turning to algae dominated.” Hauxwell says her team has found other cases where it’s proven beneficial. “Lake Wingra, once suffered from murky water due to algal blooms and lots of suspended sediment”, says Hauxwell. “When carp that root up sediment were removed from the lake, the water cleared, and light was available to support plant growth. EWM quickly expanded in the lake and helped further clear the water and keep algae and suspended sediment low. It’s now a recreational nuisance, but it’s definitely playing an important ecological role in the lake community.” Currently, EWM occurs in 4% of Wisconsin’s lakes mostly in small colonies that are not problematic. “Our researchers quantified the amount of EWM in approximately 100 EWM lakes to get a sense for how widespread it may be in any given lake and across different lakes.” Says Hauxwell. “We found that there was a wide range in abundance. In the majority of the lakes we studied, it was sparse and occurred in less than ten percent of the inhabitable zone.” When does it reach nuisance level, I wondered? “’Nuisance’ is very difficult to define, and it’s in the eye of the beholder”, says Hauxwell. Her team is excited about a plethora of research studies currently underway that will shed even more new light on this enigmatic species.
Mike Vogelsang is the DNR’s fisheries supervisor for the Woodruff area and oversees all fish management in six counties in Northern Wisconsin, including Florence. He’s more concerned with the chemicals used to control EWM than with the invasive plant itself. “There’s some real questions by our biologists, since they’re the ones required to review, and ultimately approve chemical application permits. What are the effects of chemical use going to be twenty years down the road? We’re already finding that in some cases they don’t break down as quickly as believed-they have toxicity long after the manufacturers say they do.”
Vogelsang also says that because it’s expensive to control and impossible to eradicate, learning to live with milfoil is inevitable. “Where are we really going with these treatments? When do they become excessive? What effects are they having on fish communities? These are some of the questions we’re talking about now.” Vogelsang isn’t satisfied that EWM is the destructive threat that’s worthy of all the resources directed to control it. “When EWM first came on the scene, there was a lot of fear associated with the plant, because it was a new potential threat, and the Department wasn’t sure if it would negatively impact our waters. To help stop its spread, there was a lot of gloom and doom talk with lake associations and the general public. We heard all these things about exotics and how bad they are, but it hasn’t been the end of the world. The sky didn’t fall. In many lakes, fishing got better with the invasives. I’m not saying exotics are a good thing – and we should do everything we can to prevent their spread – but EWM hasn’t impacted our fisheries.”
Is an unwarranted level of fear driving lake associations to respond too aggressively to milfoil? If so, it’s a fear that today feels like an over-reaction to a plant that now doesn’t seem to be capable of ruining lakes after all. Ironically, while EWM hasn’t harmed fisheries, the unintended consequences of using chemical herbicides to control it has, as it did on Lake Ellwood. Is what happened on Lake Ellwood an indictment of chemical herbicides? “When over-used, I think so.” Says Vogelsang. “It’s simple: No weeds equals no fish. If I had my own private lake and it got milfoil, would I attempt to control it with chemicals? No. I would leave it alone and know that eventually the plant would become naturalized with the native plant community – like it has on many lakes where no chemical treatments have been used.”
Steve Gilbert, another fish Biologist, echoes Vogelsang’s observations. He reports that for the past 22 years that he’s worked in Vilas County, the negative impacts of EWM on fish in Vilas County lakes has been zero.
While the DNR has consistently denounced EWM, new plant science and testimony from fisheries managers now seem to undercut the agency’s long-standing rhetoric. The days of demonizing Eurasian watermilfoil may be nearing an end. Stated simply, EWM is not be as bad as we formerly thought. It’s a tough bell to un-ring and DNR insiders are struggling to navigate the complicated path to this more moderate public position, without undermining their credibility.
THE FISH RETURN
May 2014. A year has passed since my last meeting with Greg Matzke and I’m back in his office to discover what has happened with Lake Ellwood since we last talked. The spring of 2013 was the first year in a decade when chemicals weren’t applied and the results were instant and dramatic. Grinning now, Matzke tells me that his fish surveys from the fall of 2013 show an astounding thirteen-thousand percent increase in young-of-the-year bluegill since 2012 (the last year of chemical treatment). The 2013 survey also found young-of-the-year largemouth bass, which makes the 2013 year class the first successful recruitment of this species in Lake Ellwood since 2008. In fact, largemouth bass recruitment in 2013 was measured at a rate more than double the recruitment level in 2002 (before chemical treatments began). This immediate rebound adds solid weight to the theory that herbicides did indeed cause the famous collapse in the fish community. A thirteen-thousand percent increase in bluegills sounds incredible and I asked Matzke to put the numbers into context. “We captured just over 97 age-0 bluegill per mile during our electrofishing survey; this is up from less than one age-0 bluegill per mile in 2012. The 2012 year class still looked poor with only 0.67 age-1 bluegill per mile during the 2013 survey. For the first time in a long time, conditions are acceptable for bluegill and largemouth bass to reproduce successfully. And they’re responding.” Putting the question as directly as possible, I asked if it was simplistic to think that “no plants equals no fish” and that “with plants, we have fish.” Matzke said, “That’s an interesting point. I mapped out the aquatic vegetation in Lake Ellwood during August 2013 with acoustic equipment to get a picture of the plants.” Showing me a multicolored map of the lake, he pointed to red-shaded areas that contained the most concentrated areas of plants. “We didn’t find a dense plant community by any means, but in certain near shore areas, there was dense plant cover where there hadn’t been any before.” Matzke draws an optimistic conclusion: “This suggests that for bluegill and largemouth bass recruitment, overall plant abundance may not be as important as these narrow strips of dense aquatic vegetation that are now found in Lake Ellwood after the herbicide treatments have stopped. These areas serve as great nurseries for young fish, offering preferred prey items and cover from predatory fish, giving bluegill and largemouth bass a fighting chance to recruit.”
When news of the Lake Ellwood fish crash started to spread, says Matzke, “I started getting calls. Other fish biologists from around Wisconsin, Michigan, and Minnesota had heard about Lake Ellwood and they were looking for more information.” They were consulting Matzke to learn about signs of incipient problems in their own lakes. Matzke also took “calls from regular folks around the State” who lived on lakes with invasive milfoil and who worried that chemical treatments were hurting fish populations in their waters. Was the same thing happening to other lakes? Matzke shrugged: “It’s really hard to say. To know for sure, you need to steer your sampling efforts to target young-of-the-year panfish. That’s not something fish managers typically do in their ordinary work. Unless you’re specifically looking for it, it’s the kind of problem that could go undiscovered for a long time and may go unnoticed until the adult population begins to be effected, as it did on Lake Elwood”.
Now retired, fisheries biologist, Bob Young oversaw Florence County Lakes from 2000-2007. He fondly remembers Lake Ellwood as once being a high quality panfish lake. He’s been following the recent changes closely and feels another important lesson can be learned. “The invasive species folks should be working closer with fish managers so they can avoid situations like this. I’ve always been uneasy with the notion that total chemical war needs to be made on any and all invasive plant populations. Maybe it wasn’t the best thing for Lake Ellwood.”
A PROMISING FUTURE
Events in Lake Ellwood have also drawn the attention of the Dr. Greg Sass. Sass is another member of the DNR’s elite Fisheries and Aquatic Sciences Research Section. As the agency’s equivalent of a CSI unit, these fish detectives answer calls to solve the most perplexing mysteries in the fisheries of the State. They’re the team whose groundbreaking scientific work in many areas over the years have directly led to major improvements in Wisconsin’s fishing. Sass visited Lake Ellwood in 2013 to investigate and define the forces behind the crash in the fish community. His ongoing study will gather more data not just from Lake Ellwood, but from two other lakes (Cosgrove, and Siedel) in Florence County. Sass is hopeful that eventually his team will be able to mechanistically explain the bluegill and largemouth bass recruitment failures observed in Lake Ellwood.
In Florence, meanwhile, Matzke says his office will continue fish surveys to monitor the recovery now underway. He remains optimistic about the future (which doesn’t include any further chemical treatments for Eurasian watermilfoil.) “It’s my hope that we can come to a clear understanding of the things that drive natural reproduction of the fish in Lake Ellwood.” Turning to the crash in the fish community, Matzke expressed his hope that “we can plausibly explain how the fish community crashed. So far the signs are quite clear; it was the treatments to eradicate milfoil—not the milfoil itself—that have seemingly indirectly caused the collapse in fish recruitment.” Lake Ellwood still has a few acres of invasive milfoil and likely always will. But native plants as well as young bluegills and largemouth bass are beginning to return. For fishery managers, that makes for a tradeoff with the sweet taste of victory.
Let’s go back to that town you imagined, the place where every citizen was a senior. The place is turning robust, as a new cohort of kids has taken to the playgrounds, sports field, and schools. “That’s not the same as a town with a lot of young adults,” cautions Matzke, “but it makes for a promising start.” At this time, the Wisconsin DNR’s careful work seems to justify the same spirit of cautious optimism about the future of Lake Ellwood. More habitat articles at fishiding.com
(For further information, questions or comments about this article, please email Greg Matzke at Gregory.Matzke@Wisconsin.gov)
“Catch and Create” Habitat Improvement Tournaments by Fishiding.com
Can you compete and still be on the same team? We all want improved fishing and habitat is the key. Think of how many Bass, Crappie and Walleye Tournaments are held ………….more
Tournament competitors dropped Fishiding “Safehouses” to improve habitat at Strom Thurmond Reservoir.
Activist Angler note: Teaming with Fishiding, PotashCorp introduced a conservation component to its benefit tournament last year and plans to include it again this year. I hope that other tournament organizers will take note and follow the leader because these kinds of projects actually could improve fisheries.
Statewide general permit for fish habitat structures ready to use
Weekly News article published: January 28, 2014 by the Central Office
MADISON – Lakefront property owners statewide can now more quickly and easily create “fish sticks” habitat near their shoreline to benefit fish and improve fishing, state fisheries and habitat protection officials say.
A new streamlined permit available from the state and an easy step-by-step guide for fish sticksare now available on the Department of Natural Resources website to help foster the projects, which involve placing trees in shallow water and anchoring them on the shore.
“”Fish sticks” projects are paying off in northern Wisconsin lakes by providing more critical habitat for fish and insects, birds, turtles and frogs,” says Scott Toshner, the Department of Natural Resources fisheries biologist who worked with partners on “Fish Sticks” projects that placed hundreds of trees in the Eau Claire chain of lakes in Bayfield and Douglas counties.
“More people wanted to do this same kind of thing on their own shoreland property so DNR created this general permit and a step-by-step guide to make the process easier for them.”
Fallen trees provide shelter and feeding areas for a diversity of fish species and nesting and sunning areas for birds, turtles, and other animals above the water, Toshner says. “Nearly all fish species use woody habitat for at least one portion of their life cycle,” he says.
“But fallen trees have been removed from the water in many areas. “Fish sticks” add to the natural complexity of the near-shore area by restoring woody habitat that was removed during shoreline development.” More habitat articles at fishiding.com
Interest in Fish Sticks projects to restore this woody habitat has been growing throughout Wisconsin and the region, says Martye Griffin, the DNR waterway science policy coordinator. DNR responded by converting the existing general permits for fish habitat projects (Fish Crib, Half-Log, Spawning Reef, Wind Deflector and Tree Drop) to a statewide general permit, and added standards for fish sticks.
The new general permit allows property owners on lakes to have a streamlined permitting process to submerge groups of trees near their shoreline, Griffin says.
“The streamlined permit process is less costly and can be reviewed in less time,” he says. It also allows for fish sticks sites constructed in later years and by different property owners on the same lake to “add on” to an existing approved permit without a new application fee – something the DNR has never done before, he says. Even though an ‘add on’ site may not require an application fee, the sites are still reviewed the same way as a new site.
The general permit identifies the location, design, and other standards and conditions these beneficial projects must meet to qualify for the general permit and to ensure minimal impacts to public rights in the waterway.
Step-by-step guide
In addition, DNR created a new, step-by-step guide for landowners who are interested in developing a fish sticks project. “It provides instructions to plan and complete a project, including equipment needed, site suggestions, and potential funding sources.”
More information on the general permit and to access the fish sticks guidance documentis available by searching the DNR website for “Fish Sticks.”
FOR MORE INFORMATION CONTACT: Scott Toshner, 715-372-8539 Ext. 121; Martye Griffin, 608-266-2997
Aquatic Playground Can Turn Water Tanks Into Fish Schools
July 30, 2013 — Raising fish in tanks that contain hiding places and other obstacles can make the fish both smarter and improve their chances of survival when they are released into the wild, according to an international team of researchers. More habitat articles at fishiding.com
Juvenile Atlantic salmon raised in tanks with hiding places and floating artificial plants showed signs of improved brain function and could better navigate mazes than the salmon reared in standard hatchery tanks. The discovery may help fish hatcheries raise a smaller number of fish that can better survive in the wild. (Credit: Anne Gro Salvanes)
“It’s a key problem in that we are very good at rearing fish, but we’re really not very good at releasing those animals in the wild such that they survive,” said Victoria Braithwaite, professor of fisheries and biology, Penn State. “There’s a mismatch between the way we raise them and the real world.”
Juvenile Atlantic salmon raised in tanks that including pebble and rock hiding places and floating artificial plants were better able to navigate mazes and showed signs of improved brain function compared to the salmon reared in standard hatchery tanks, Braithwaite said. This may help conservation fish hatcheries raise and release fish that are better adapted to survive in the wild.
Conservation fish hatcheries raise cod, salmon, trout and other types of fish and release them in places where their species may be threatened, or where their populations are declining.
“The philosophy of most fish hatcheries is to rear a large number of fish and hope some survive,” said Braithwaite. “What this study is suggesting is that you could raise fewer, but smarter fish, and you will still have higher survivability once you release them.”
The researchers, who released their findings today (July 31) in the Proceedings of the Royal Society B, placed pebbles and rocks at the bottom of the tank and added plastic plants weighted down so they would float vertically in the water. Braithwaite said the objects created a more natural, three-dimensional ecosystem.
“In the hatchery the world is homogenous, life is boring and monotonous,” Braithwaite said. “The water flow is the same, you don’t have to find your food and you don’t have to avoid predators.”
The researchers also moved the objects around about once a week during the eight-week study, which took place in Norway.
When the researchers placed the salmon in a maze, the fish raised in the enriched tanks made fewer mistakes when trying to escape the maze, Braithwaite said. The performance of the salmon from the enriched tank continued to improve with each trial, and they learned to solve the maze much faster than fish reared the standard way.
The brains of the fish from the enriched tank were also different from the fish raised in the standard hatchery tanks, according to the researchers.
They noted increased expressions of a gene in a region of the fish’s brain that is associated with learning and memory, an indication of increased brain function and growth. The fish raised in standard tanks did not show this sign of increased brain development.
Interacting with the environment can influence gene expression in the brain, Braithwaite said.
“The brain is a very plastic organ, it’s a dynamic structure,” said Braithwaite, who worked with Ann Gro Vea Salvanes, professor of biology; Olav
Moberg, doctoral student; Tome Ole Nilsen, researcher in marine development biology; Knut Helge Jensen, senior engineer in evolutionary ecology, all at the University of Bergen, Norway; and Lars O.E. Ebbesson, group leader of integrative fish biology, Uni Research, Bergen. Braithwaite said the enriched tanks created significant improvement in the intelligence and adaptability of the fish, but were relatively inexpensive and easy to implement. Owners of fish hatcheries should be able to afford the creation of enhanced tanks.
Story Source:
The above story is based on materials provided by Penn State, via EurekAlert!, a service of AAAS.