Q&A with Ted Danson, author of ‘Oceana’
Actor and activist says oceans can recover from overfishing and acidification, but only with our help.
Why did you feel the need to become an ocean activist?
Why did you feel the need to become an ocean activist?
Structure Fishing 101
written by Tim Allard
Structures are a big factor in fish habitat and certain types will concentrate fish.
Structures are areas where there is a variance in the depth or contours of the lake bottom.
If you’re new to fishing, knowing how to find structure and understanding how fish relate to it will dramatically improve your ability to find and catch fish. As a term, structure gets used a lot in fishing articles, television shows and presentations by professional anglers. In this guide I’ll define structure, discuss various types and share some tips for fishing them.
What is structure?
Structures are the physical features of a lake or a river bottom. From a fishing perspective, structures are areas where there is a variance in the depth or the contours of the bottom, and these changes can range from subtle to dramatic. Structures can be natural as well as human-made features of the underwater landscape. Structures are a big factor in fish habitat and certain types will concentrate fish.
Before I get any further, let me explain what structure is not. Sometimes cover is incorrectly used interchangeably with structure. Cover refers to objects in or on the water that provide shelter for fish, such as vegetation or a dock. Of course, finding structure and cover together can make great fishing spots (e.g., a hump with a dense weed bed), so it’s no surprise that the two terms get used interchangeably.
Some Basic Structures
Here are some common fishing-structures. A ledge is the beginning of a distinct change in depth. It marks the top of a drop, which is simply the sloping of the bottom towards deeper water. Ledges and drops are main structures that hold many freshwater species, such as walleye and muskie. Add a weedline in close proximity to a ledge or a drop and they can be prime spots.
A hump is a shallow area surrounded by deeper water and often a preferred piece of structure for bass. Humps are sometimes called underwater islands. A hole is the inverse of a hump – a deep pocket in the bottom surrounded by shallow water. Holes are favorite hiding spots of bottom-dwelling hunters, like catfish.
More Advanced Structures
The above items are some basic structures, but they also form the building blocks for more elaborate pieces of structures. What follows are some of the more common fishing structures, but this listing is by no means exhaustive.
One example is a spine. To imagine a spine, first picture an underwater hump as an elastic band. Take that band, stretch it slightly and you’ve got a spine. One of the most common places to find spines is as a continuation or off of a point from a shoreline, but others exist off the end of humps as well.
The contour of spines will vary, some even have fingers running off the sides of them, and their gradient, or slope, will also vary from steep to subtle. Like a hump, spines are surrounded by deeper water, with drops and edges on each of their sides. Long spines can be travel routes for fish as they move towards shore, transitioning from deep to shallow water.
The inverse of a spine is a cut, or trough, which can be described as elongated holes. Most common in flooded areas or reservoirs, many of these structures were streambeds in their former lives before water levels rose above their banks, submerging them. Of course, drops can sometimes contain cuts in their sides that are simply grooves that were not previously riverbeds. Again, these irregularities can attract fish and are worthy of fishing and their ledges can be particularly effective at holding fish or acting as route ways.
Still got that elastic? Holding both ends, bring them together slightly until the band bows. You’ve just created a saddle between two islands or underwater humps (your finger tips). Saddles can be great structures to fish with both deep and shallow water structures as well as being corridors for fish to follow as they move from one structure to the next. Depending on their disposition, fish may be anywhere on the saddle complex. They may be tight to the islands and feeding or positioned slightly off the saddle and inactive. In this case, it pays to know the behaviors of your target species and fish these areas accordingly, but when in doubt, pick the structure apart with different lures to work a variety of depths.
Another piece of structure is the breakline (sometimes shortened to break). A breakline is really just the edge of a drop that runs perpendicular to the shoreline. If you’ve ever trolled along the shore in an S-pattern, running between shallow and deep water, you’ve been fishing the breakline. Sometimes anglers will describe the different breaks as primary and secondary. The primary breakline is the first sharp drop in depth traveling from shore outward; the secondary following thereafter and another major drop in depth. Whether you think of breaks as walls or underwater stairs, they can be good structures to fish. Yet the entire breakline does not always hold fish. What makes them great fish-holding structures is when other elements (like a cut or a bend) or cover (such as a weed edge) are added to a stretch of the break.
Why is Structure Important?
Structure often concentrates fish. Structures provide different advantages to various species (such as corralling baitfish, providing an ambush area, or being close to deep water for comfort). For reasons like the three listed above, many species seldom stray far from structure. Learning how the fish you’re targeting relates to structure and being able to find structure on the water will increase your ability to catch fish. Structures can move you away from shorelines to intimidating expanses of water that may seem void on the surface, but what lies underneath can be fishing hotspots.
Putting Structure in Context
It’s important to keep in mind that structure is but one factor in the finding-fish equation. Finding structure can put you on fish, but it’s not an absolute that you’ll catch them. Structures are often feeding areas, but if there’s no food they’ll likely not hold fish. Weather conditions and seasonal patterns are also important to keep in mind and, again, are part of a larger equation to finding fish.
Other factors affecting if structures hold fish are temperature, oxygen supply, or water quality/light penetration. Since different species have different dispositions, some structures may appeal to certain fish and not others. For example, a 12-foot hump on a gin-clear, rock bottom lake may be a smallmouth bass hotspot, but too bright an area for walleye during the day. Yet at dusk and dawn it might concentrate light-sensitive walleye that move in to feed and ambush prey. Sometimes how well structures produce fish is all about timing and putting environmental and forage factors in your favor.
Using hydrographic maps and fish finders together can make finding structure a relative easy task.
How Fish Relate To Structure
As mentioned, food and environmental factors impact the mood of fish and thus, impact how they relate to structure. A common misnomer is that if fish are not directly on top of structure, they are not there or are not relating to it. Speaking in general terms, fish “on” structure are usually aggressive (add cover to the mix and things could change), while fish suspended “off” of structure are less aggressive or in a neutral mood, resting between feeding binges (unless baitfish are also suspended off the structure). Fish distanced from structure are still relating to it and catchable, so novice anglers should learn to fish both the actual structure as well as its surroundings. It pays to ask, “How do the fish travel to this spot? Is there an obvious route on my hydrographic map?” and “If fish are not directly on the structure, where might they be off of it?”
The Tools of the Trade & Finding Structure
As mentioned earlier, the easiest structures to find are those that extend from land, such as a point. The reason is obvious; one sees the gradual slope on land and knows this piece of structure likely continues into the water. What’s difficult is finding structure when there are not hints from land. This is where a fishing finder and hydrographic maps are critical.
Hydrographic maps illustrate the bottom contours and depths, showing where the structures are on a body of water. Of course the scale of the map will impact the detail of the features it shows. Depth finders are your underwater eyes. They provide a continual reading of the depth below your boat, and help you pinpoint depth changes and find structure. Using hydrographic maps and fish finders together can make finding structure a relative easy task, even on a new lake.
A recent addition to an angler’s arsenal are GPS units, which can hold hydrographic maps as well as store waypoints, allowing you to mark structure once you find it. Of course, carrying some buoys is also handy to help you stay on structure as you fish the entire area.
Tips for Fishing Structure
I won’t try and cover how-to fish the various types of structure in one article, but I will suggest a few tips. First off, working jigs along the bottom and around the edges of structure can catch several species of fish, anglers should not just concentrate on the bottom (whether using jigs or not). Consider trying lures to work other depths around the structures. Also, try and fish “off” of structure as mentioned earlier. By this I mean if trolling the breakline, weave out into deeper water to look for suspended fish. The same concept applies when casting areas, like humps, islands and saddles.
Here’s a tip: fish sometimes suspend off of structure around the same depth as the structure itself. So, a hump that’s 12-feet deep might have a pike several feet away from the edge of the structure, suspended at 12-feet over water with a depth of 25-feet. Another important tip, which I’ve touched on already, is learning to isolate prime structure by considering other factors influencing fish behavior (such as food, cover, environmental elements, and so on).
Once you’ve done your homework and found structure you think will hold fish – take the time and fish it thoroughly. Many anglers work large structures too quickly, and if a big trophy is relating to a certain, special area on the structure (often called “the spot on the spot”) you might pass over her.
Learning about structure is just another way of thinking to solve the “Where are the fish today?” puzzle. Use maps and read up on your favorite species and how they relate to structure and you’ll find yourself catching more fish. Large pieces of structure can be intimidating to fish, so take the time to look for the best areas (considering other fish-factors) and fish them thoroughly.
Share this article with your fellow outdoorsmen:
Ohio Pond Management
Increasing Fish Production
Methods of Increasing Fish Production
Fertilization
Artificial Feeding
Adding Fish Habitat Structures
Pond owners should view their ponds as selfsustaining bodies of water that are capable of providing all of the ingredients necessary for good fish production. The amount of fishes that can be harvested depends upon a pond’s ability to produce them, and this amount varies from pond to pond. Ohio ponds can often support up to 250 pounds of fish per acre, although this amount is generally less for ponds that are smaller than one acre. If a pond’s normal fish production is less than what the pond owner deems acceptable, it may be possible to enhance production.
The most effective methods to artificially increase fish production are pond fertilization and fish feeding (pellet feeding pictured). However, each of these methods can also cause pond problems, so pond owners should consider them only after carefully weighing the trade offs associated with trying to increase fish production.
Fertilization
Fertilization can improve fish production by increasing the production of tiny plants and animals at the bottom of the food chain, the phytoplankton and zooplankton. This increase in production at the bottom of the food web may ultimately translate into improved growth and production of sport fish. However, negative impacts from fertilization can also result if the added nutrients stimulate growth of undesirable types of aquatic vegetation and algae. Whereas excess vegetation can be a problem to anglers and swimmers during warm weather months, it can also make the pond more susceptible to fish kills due to a build-up of dead and decaying plant material. The pond owner may find that the cost of fertilizer, effort to maintain a fertilization program, and risk of fish kills outweigh the benefits of the increase in fish harvested.
Most ponds in Ohio are adequately supplied with nutrients from the surrounding watershed and should not require artificial fertilization. In fact, many ponds receive so many nutrients from the watershed alone that problems develop with growth of excess vegetation and reductions in water quality. The following criteria should be met if a pond is to be considered for fertilization: 1) the watershed to pond ratio is less than 20 acres of watershed per surface acre of pond, 2) the watershed consists primarily of woodland acreage with soils that are low in fertility, and 3) the pond has a minimal amount of shallow water and most of the shoreline has the recommended 3:1 slope to discourage the growth of aquatic vegetation. Ponds without these characteristics should not be fertilized.
If fertilization is appropriate, then the pond owner needs to proceed with the proper treatment applied on a careful schedule. The recommended procedure is monthly applications of liquid fertilizers 10-34-0 (N-P-K) applied at the rate of two gallons per surface acre. Treatments should begin when water temperatures reach 60°F in the spring, and stop when water temperatures drop below 60°F in the fall. Fertilization should be temporarily halted when water temperatures exceed 80°F during the summer. Dilute each gallon of fertilizer with 10 gallons of water and spray the mixture evenly over the pond surface. Water clarity is a simple and convenient way to measure the progress of a fertilization program. The water clarity should be monitored twice each month throughout the fertilization season. This is easily accomplished by simply lowering a white object into the pond, such as a coffee mug on the end of a string. The white object should be visible to at least 18 inches below the water’s surface. If the object is not visible down to 18 inches, overfertilization may be a problem. In this case, postpone the next fertilizer treatment until the water has cleared somewhat and remeasure water clarity.
Artificial Feeding
Feeding is the most direct and reliable method to increase production of bluegills and channel catfish in ponds that are less than five acres. Proper artificial feeding will increase fish growth and provide larger fish for anglers. Unlike fertilization, with artificial feeding all of the nutrients go directly into fish production rather than the complex food chain. For ponds less than five acres, feeding is a feasible way to increase fish production. Bluegills and channel catfish will readily eat pelleted feeds that are available at agricultural feed stores. Pellet feed containing at least 25 to 32 percent protein will produce the best growth. Largemouth bass prefer live natural foods and will seldom eat pelleted feed.
Training fishes to accept artificial pellets may take a few days. When bluegills are feeding on the surface in the evening, tossing a few floating pellets into the areas where they are feeding will teach them to eat pelleted food. Begin an artificial feeding program by feeding fish about two pounds of pellets per acre per day. This amount may be increased to 15 pounds per acre per day after they have become accustomed to being fed. The feeding rate should be adjusted in the summer according to how much the fish are eating. Feeding may slow or even cease during the summer if water temperatures get above 85°F.
The best guide to feeding fishes is to give them no more than they can eat in 15 to 20 minutes. Using floating pellets in a feeding ring is a good way to monitor how much food they are eating. A feeding station approximately three feet in diameter can be constructed by sealing the ends of a piece of corrugated field tile. Connect the ends after sealing to form a three-foot circle and place the tile in an area of the pond that can easily be reached to fill with food (pictured right).
A pond owner should be willing to make a long-term commitment to continue feeding before a feeding program starts. Feeding should begin in the spring when water temperatures reach 60°F and should stop in the fall when water temperatures drop to 60°F. Fish should be fed daily at approximately the same time and in the same place. Missing a few days of feeding while on vacation will not cause problems if feeding is consistent during the remainder of the summer. Overfeeding fish can cause many of the same problems as overfertilization. Food that is not eaten by fish will decompose and use up the pond’s dissolved oxygen (see fish kills). Decomposing food can also release nutrients into the water that may promote the growth of aquatic vegetation and algae.
Adding Fish Habitat Structures to the Pond
Habitat structures –“fish shelters,” or “fish attractors”– are primarily designed to concentrate fish and increase an angler’s chances of success. Depending upon the size and type of materials used, structures can provide cover, resting areas, and feeding areas. Habitat structures can act as substitutes for natural cover in ponds where these types of areas are lacking.
Habitat structures can be constructed from many different natural and man-made materials. Easily obtained materials such as discarded Christmas trees can be banded together, weighted and sunk, although trees such as oak, hickory, and cedar work best due to their resistance to decay (brush pile picture right) . Man-made materials such as PVC pipe, field tile, concrete block, and wooden pallets can also be fashioned into fish attracting devices. Habitat structures can be placed into the pond from the bank if the structures are not too large and there is relatively deep water near the shore. Larger structures can be placed from a boat to allow access to deeper water.
Winter ice cover provides an excellent opportunity to build and place structures too large to install from the shore or by boat. These structures can be built on the ice, or built on shore and dragged out onto the ice. In either case, the structure is placed on the ice and allowed to fall into the desired location when the ice melts (see brush piles on ice to the right).
Fishes & anglers alike will make the best use of habitat structures that are distributed carefully in the best locations. These structures are best placed in water that is within reasonable casting distance from shore & two to eight feet deep to allow consistent fish use. Habitat structures should not be placed in the deepest part of the pond where low dissolved oxygen levels (common during summer) make them inaccessible to fish.
Experienced anglers know that most fish are found in only a relatively small portion of a lake. The reason is structure.
Structure is what makes fish congregate in certain locations. Fish also use structure as a route when migrating from one place to another to feed or spawn.
What is structure? In a lake, natural structure is the lake bottom, rocks, trees, weeds, drop-offs and more.
But it can also be artificial. Fish cribs, stake beds and fish habitats, made by or put in the water by man, are examples of artificial structure. A fish crib can be pilings of criss-crossed wooden boards. Habitat can look like a bush made of a dozen or more pieces of plastic tubing set into a 5-gallon bucket filled with concrete. Sometimes discarded Christmas trees are tethered to a concrete block and sunk in the water. A pile of rocks is another example.
One thing that most artificial structures do is accumulate algae. Small-bait fish and fry are attracted for the food and cover. Their presence in turn attracts panfish and gamefish.
Fish use structure to find food and as cover, either from sunlight or from predators. Some fish will place themselves in cover as an ambush point when they are the predator.
The bottom line is that artificial structures are often placed in heavily fished lakes to create more fishable locations.
One such body of water is Shabbona Lake in DeKalb County. On Saturday, the Shabbona Lake Sportsman’s Club will host the 11th annual Rockfest. But this is no music festival. It’s an event where rocks will be placed into the lake for artificial structure.
“Three truck loads of rock, 20 tons each, are coming from the Macklin quarries in Rochelle.” said club President Rich McElligott. “So we’re always looking for helpers who will load rocks on plywood sleds. ATVs will drag the sleds out to onto the lake and the rocks will be dumped into the water through a hole in the ice. Bobcats will bring out the bigger rocks.”
The rocks are mostly the size of softballs or basketballs. They’re also getting about 50 rocks that are will be 2-foot-by-3-foot.
This year, rocks will be placed by an underwater point across from the spillway. Some large dead trees that have been collected at the Shabbona State Park also will be submerged at other parts of the lake. The Illinois DNR fisheries biologists are always consulted before adding the artificial structure.
Since this program started 11 years ago, more than 1,000 tons of rocks have been added to various locations at Shabbona Lake, including some shorelines where rock was used for rip rap to help reduce erosion. The Illinois Smallmouth Alliance, DuPage River Fly Tyers and Shabbona Lake Sportsman’s Club each purchased a truckload for this event.
The event has in years past drawn from 35 to 75 helpers. Once the work is completed, the club hosts a brat and hot dog cookout. Many helpers spend the rest of the day ice fishing.
Volunteers are asked to meet at the Shabbona Lake park office at 8:30 a.m. Saturday. Shabbona Lake is off Route 30 by the town of Shabbona in DeKalb County. For more information on this event, call Rich McElligott at 815-824-2523.
Don Dziedzina’s blog is at Illinoisoutdoors.com
Twelve Southern California water agencies have notified the U.S. Fish and Wildlife Service that they plan to sue to block expanded sucker fish habitat that could crimp water supplies for people, the agencies said Tuesday.
The action was prompted by a ruling, which went into effect in January and added 1,026 acres to the fish’s habitat, bringing the total protected area to more than 10,000 acres. The federal agency expanded the habitat for the small brown-and-black mottled fish after an environmental organization sued in 2005, alleging the fish was not protected in its namesake river, the Santa Ana River.
The legal notice, filed Monday, gives the federal agency 60 days to respond before a lawsuit is filed.
Jane Hendron, a spokeswoman for the Fish and Wildlife Service’s Carlsbad office, did not immediately return a call or e-mail seeking comment.
The habitat designation does not mean any human water supplies will be shut off or altered, but it does mean that local water districts and cities must consult with the Fish and Wildlife Service before doing work on any new or existing water projects with any federal involvement and could face stricter limits on what they can do.
The expanded habitat includes upstream areas that have no sucker fish living in them now — and that sometimes dry up entirely because those areas hold the gravel that is critical for the fish’s survival, said Ileene Anderson, a biologist with Center for Biological Diversity, the group that sued in 2005. That gravel needs to be washed downstream to help the fish, she said.
“The whole reason is to identify areas that may not have any animals in them anymore, but historically did. The critical habitat looks at recovery opportunities as well, rather than just keeping them on life support,” Anderson said of the fish.
The water agencies that filed the notice said Tuesday they were most concerned that they would be required to use water that currently goes to residents in Riverside and San Bernardino counties to push gravel downstream to areas where the creatures reproduce.
That could mean diverting water that could supply more than 500,000 people and impact the water supply for about 3 million residents who live downstream, said Douglas Headrick, general manager of the San Bernardino Valley Municipal Water District’s sucker fish task force.
“The only way to move the gravel is with water. What we’re concerned about is that someone will require us to use the water that we’ve been diverting to move gravel. We don’t know any other way,” he said.
The Santa Ana sucker fish is listed as a federally threatened species with known populations in areas of Riverside, San Bernardino, Los Angeles, Ventura and Orange counties.
The fish in Ventura and Los Angeles counties, in the Santa Clara River, have interbred with other types of sucker fish, however, and are not included in the critical habitat listing because they are not considered genetically pure, Anderson said.
The critical habitat now includes portions of the Santa Ana river in San Bernardino, Riverside and Orange counties and the San Gabriel River and Big Tujunga Creek in Los Angeles County.
The 12 agencies who are objecting to the final ruling on the habitat have planned or current projects or activities that will be affected by the inclusion of the Santa Ana River in the protected area, according to the 60-day notice paperwork. Included are water districts in Big Bear, San Bernardino, Riverside, Yucaipa and others, as well as the city of Redlands.
Read more at the Washington Examiner: http://washingtonexaminer.com/news/2011/04/calif-agencies-sue-over-sucker-fish-habitat#ixzz1KBj6L3I7
Shimano donated a specially designed pontoon boat adapted from the Shimano Live Release boat program to transport and strategically place thousands of fish habitat structures throughout the lake.
DAWN OF A NEW SEASON. POND MANAGEMENT IS ABOUT TIMING – BY BOB LUSK
Thursday, January 27, 2011 at 5:27pm
Water temps, not dates, the real key
Remember Forrest Gump? He was running along a lonely stretch of highway, minding his own business, when he steps in a pile of nature’s fertilizer. Forrest looks down, then back at the front guy in the crowd behind him, and says, “It happens.”
In the world of pond management, “it” sure does. Let’s examine “it.”
Beginning late each winter, extending into spring, then deep into summer, I get the same questions, from different people, sometimes in different states, but roughly the same questions about their fishing ponds.
Example: “I fertilized my lake, and nothing happened. The water is just as clear as ever.”
Or, maybe this one: “I followed label directions, fertilized the right amount for my pond, and bottom weeds have taken over.”
No pretty green water, no plankton bloom in their fishing ponds.
What happened? “It” didn’t work.
What gives? Is “it” the fertilizer? Or, maybe the water? Was “it” applied correctly? Was the compound properly distributed throughout the pond, then allowed to fully dissolve into the water column, the way Pond Boss says to do “it”?
There’s an old adage for real estate people that relates to the three basic principles of the property — location, location, location. In pond management, “it” is “timing, timing, timing.”
You can add fertilizer to your water, applying at the proper rates, the proper N-P-K (nitrogen-phosphorus-potassium) mix, until you are blue in the face, and never get a bloom. This is especially 1 if you were to fertilize during the coldest spell of the winter. Timing. The right pond management technique, perhaps, but it was used at the wrong moment.
As you plan for the New Year for your favorite fishing pond, the new growing season, start putting together your basic pond management strategy for the next 12 months. In Texas, the Agriculture Extension Service provides excellent information in the form of a calendar. Trouble is, on any given spring day, the temperature at the southern tip of the Lone Star state may hit 85 degrees, while the folks in Amarillo, located in the middle of the Texas Panhandle, may be shoveling snow off the sidewalk. So much for a pond management schedule dictated by pages on a calendar.
Instead, let water temperature be your guide. Check the Pond Boss display ads for catalog distributors and buy a good thermometer. Then use it to check water temperatures on a regular basis.
Don’t get too concerned about the mechanics of this, whether you take the temperature six inches below the surface or 3 feet deep, just make sure to place the thermometer in approximately the same place each time in your fishing pond.
If you can’t be at your pond all the time, check temps as often as possible. Write your findings in a notebook. Watch your pond temperature patterns, and keep notes. Two or three years of sound temperature record keeping will put you in the pond management driver’s seat.
Here’s how: Let’s say, for instance, that at 45 degrees, you start noticing the onset of filamentous algae growth in your fishing pond. Write that in your notebook. At 55-60, fish began coming to your feeder. Make a note. At 62-68, bass went on their spawning nests. Two weeks later, baby bass are seen in schools, around the edge of your fishing pond. Write it down. All of it.
Those little facts will help you achieve pond management goals next year, and the year after, beginning with the first hint of filamentous algae, which tends to get worse as water temperatures rise. With all biological activity that occurs in your fishing pond, there is a direct relation to water temperature.
Take plankton for an example. Desirable plankton blooms, adequately fed, will not thrive until water temps in your fishing pond are consistently above 60 degrees. That’s not to say you can’t find plankton in winter. You can.
But, to properly feed baby fish in your pond, 60 degrees is “it.” Sixty is the trigger point.
What about feeding pelleted fish food like Purina Aqua Max, you might ask? Different fish respond to different temperatures. When your temps hit 50-55 last Fall, channel cat eased away from the fish feeder, into the murky depths of your fishing pond to hunker down in a big school. But, your feisty bluegill probably came to the fish feeder even as temps dropped into the lower 40’s.
I often get asked about stocking fingerlings in a new fishing pond. When should you introduce fingerlings to a new environment?
With our pond management clients, we urge fishing pond owners to avoid extremes. Both hot and cold can be stressful for handling fish. Oh yes, fish can certainly survive their extremes, once they arrive in the fishing pond. But getting them from the hatchery to your pond can be tricky during really hot or really cold. Transport fish during warm or cool times.
Here’s a simple temperature “calendar” to bring pond management techniques to a sharper focus:
Temps below 32 degrees
Ice. Aerate northern ponds, if possible, and keep snow cover off clear ice. This is a great opportunity to prepare brush piles, rocks, pipe, or other materials on top of ice, where they can sink, after thaw, for your fish cover.
32-42 degrees
Do not expect fish to feed. Warmwater fish are too sluggish, trout feeding is minimal.
42-48 degrees
Macrophytic aquatic plants are dead. Good time to install cover into barren areas. Be sure to put cover in mid-depth areas of your fishing pond, relatively near shore.
48-55 degrees
Bluegill will feed, especially if conditioned to fish food pellets. Filamentous algae begins to grow around fishing pond edges, especially during warm afternoons. Peak trout feeding temperatures.
55-58 degrees
Channel catfish come to life, and begin searching for food. Bluegill activity escalates, Bass begin moving from structure. Filamentous algae thickening. Trout active.
58-62 degrees
Fertilize fishing ponds with clear water! Do not dally. Bass begin showing signs of nesting, preparing crater-shaped spots, 4-6 feet deep, 18 inches in diameter, for spawning. Filamentous algae in full growth stage. Begin checking for plankton bloom 5 or 6 days after fertilizing, as temps continue their Spring rise. Time to begin stocking fingerling fish into new ponds, or adult fish for corrective stocking situations. Trout still active and growing. Crappie on nests.
62-68 degrees
Worldwide, this is prime spawning temperature range for largemouth bass in your fishing pond. Plankton blooms beginning to color the pond water. Measure pond water visibility, shooting for 18-24″. This is still a good time to fertilize your pond. Redear sunfish and bluegill begin preparing and sitting on nests. Trout active and growing. Cattails begin to grow, along with peripheral reeds. Watch for beginnings of rooted aquatic plants underwater in your pond.
68-72 degrees
The bass spawn wanes, with schools of baby bass beginning to appear. Bluegill are on nests. Plankton reach optimum growth. Measure visibility in the fishing pond. Rooted plants growing, cattails and reeds tall. All fish feeding well.
72-76 degrees
Keep measuring pond water visibility; maintain plankton blooms. Watch for plankton bloom beginning to darken from bright green to an olive green. Cattails and reeds reaching maturity. American lotus and select lily pads begin to show themselves. Peak operating temperatures for all warm water fish. Heavy feeding, both natural food and from your feeders. Young of the year bass, bluegill and redear can be observed. Channel catfish beginning their spawning rituals. Monitor plankton bloom, keep goals in sight. Trout tend to become sluggish.
76-80. degrees
Trout are dead. Warmwater fish on full feeding throttles, fish growth rates max. Rooted aquatic plants maturing, still rapidly growing. Filamentous algae beginning to disappear. Plankton, when fed properly, is thriving. Watch for plankton bloom color to shift from olive green to a greenish brown. Be careful when boosting your pond algae bloom with fertilizer. Use maintenance doses, only. Keep checking visibility; use maintenance doses of fertilizer as pond water visibility increases beyond 24-30 inches. Floating plants such as duckweed, azolla, become noticeable. Good time to begin treating unwanted vegetation. Be sure to have stocked fingerlings by now.
80-84 degrees
Warm water fish are active, and plankton tends to grow quite rapidly. Do not over-fertilize an overactive plankton bloom in your pond. Measure pond water visibility, watch as plankton bloom color changes. When plankton shifts to a brownish/ green color, it has shifted from mostly phytoplankton (plant plankton) to zooplankton (animal plankton). Zooplankton blooms rapidly deplete their food source, phytoplankton, and then the bloom will “crash”. Zooplankton run out of food, zooplankton die, and sink in your fishing pond. Pond water rapidly clears. Either feed the algae bloom, or let it crash, you choose, based on your pond management goals. By now, baby fish hatched in your fishing pond are reaching fingerling sizes, and clear pond water makes forage fish available to bigger predator fish. But, remember, clear water lets sun penetrate deeper in the pond water column, expanding rooted plant territory.
84-88 degrees
Be wary of fertilizing your fishing pond. Better to under-fertilize a lot than over-fertilize a little. Biological activity, especially microbes, in water, reaches most rapid life cycle movement in warmer water. Fish metabolism beginning to slow, growth rates reaching summer doldrums. Vegetation reaching maximum growth rates and penetration in your pond.
88-92 degrees
Even warmwater species begin to hunker down in their “survival” mode. Limited feeding times, fish get sluggish. Vegetation at maximum coverage. Watch pond water chemistry, especially plankton blooms more dense than 18 inches visibility.
Above 92 degrees
Check your pond’s plankton. Drink lots of fluids. Be wary of chemically treating excessive aquatic plants. Killing too much vegetation, too fast, can devastate your fishery. Oxygen depletions are most common.
Our friend Forrest would say, “Timing is as timing does.”
Humans seem to rely on a calendar, but nature doesn’t always oblige, and her “work schedule” varies greatly from region to region. Observe pond activity, and train yourself to rely on the thermometer.
Rethink your annual pond management schedule to coincide, not with readings on a watch or even a calendar, but with temperature levels. It’s nature’s way, and it should be yours.
POND BOSS Magazine is the world’s leading resource for fish, pond and fisheries management information including discussions on muddy water, raising trophy fish, fish feeding, building a pond, algae control and more. Check us out at www.pondboss.com or contact Bob Lusk, the Pond Boss himself, at 903-564-5372. His books, Basic Pond Management, Raising Trophy Bass and Perfect Pond, Want One, may be purchased by calling 800-687-6075 or ordering online at www.pondboss.com